The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is a crucial component of Mu2e and requires accurate characterisation to detect any potential flaws and to produce a detailed field map. In order to design and build a precise field mapping system consisting of Hall and NMR probes, tolerances and precision for such a system need to be evaluated. To generate a final magnetic field map of the Mu2e solenoids, a continuous field has to be extracted from a discrete set of measurement points. A design for the Mu2e field mapping hardware, and results from simulations to specify parameters for Hall and NMR probes are presented. A fitting procedure for the analytical treatment of our expected magnetic measurements is introduced.